Order of Real Numbers

Let a and b be any two real numbers.

Symbol	Definition	Read
a > b	a-b is positive	a is greater than b
$a \le b$	a-b is negative	a is less than b
$a \ge b$	a-b is positive or zero	a is greater than or equal to b
$a \le b$	a-b is negative or zero	a is less than or equal to b

The symbols >, <, \ge , and \le are **inequality symbols**.

WRITE IT DOWN! WRITE IT DOWN!

Let a and b be real numbers with a < b.

Interval Notation I	Inequalit	y Notation
---------------------	------------------	------------

[a,b] $a \le x \le b$

(a,b) $a \le x \le b$

[a,b) $a \le x < b$

(a, b] $a < x \le b$

The numbers a and b are the right and left **endpoints** of each interval.

Equivalent

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide P-30

Four Representations: Intervals of Real Numbers

[3,4]

The real number x is greater than or equal to 4.

1 © 2007 Pearson Education, Inc. Publishing as Pearson Addison W.

Four Representations: Intervals of Real Numbers

The real number is at least 2 and strictly less than 10.

Slide P-33

WRITE IT Unbounded Intervals of Real Numbers

Let a and b be real numbers.

Interval Notation

Inequality Notation

$$[a, \infty)$$

$$(a, \infty)$$

$$(-\infty, b]$$

$$(-\infty, b)$$

Each of these intervals has exactly one endpoint, namely a or b.

AM: Solve Linear Inequalities

1. Solve:
$$5x - 8x + 13 > 5x - (16 - 7x)$$

$$(A)$$
 $< \frac{29}{15}$

[B]
$$x < -\frac{29}{9}$$

[C]
$$x > \frac{29}{15}$$

(A)
$$<\frac{29}{15}$$
 [B] $x < -\frac{29}{9}$ [C] $x > \frac{29}{15}$ [D] $x > -\frac{29}{9}$

$$5x-8x+13 > 5x-16+7x$$

 $-3x+13 > 12x-16$

$$\frac{29}{15}$$
 > χ

$$-\frac{15x}{-15} > -\frac{29}{-15}$$

Slide P- 42

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

AM: Solve Linear Inequalities

- 2. If the replacement set is the set of integers, find the solution set for the inequality $x + 11 \ge 12$.
 - (A) (1, 2, 3, ...) (A) (1) (23, 24, 25, ...) (1) (-1, 0, 1, ...)

 $\begin{array}{c} \chi + || \ge |2 \\ -|| & -|| \\ \chi \ge | \end{array}$

X>[{2,3,4,...}