#### Objective

- Solve linear inequalities and <u>listen</u> to a justification of a solution from a partner and critique the solution using properties of inequality and counterexamples.
- Success Criteria
  - ✓ Define linear inequality
  - ✓ Turn verbal phrases into mathematical inequalities
  - Graph inequalities
  - Compare inequalities to equations
- Vocabulary: decreased, increased, quotient, product

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide P-35

### Linear Inequality in x

A linear inequality in x is one that can be written in the form ax + b < 0,  $ax + b \le 0$ ,  $ax + b \ge 0$ , or  $ax + b \ge 0$ , where a and b are real numbers with  $a \ne 0$ .

### AM OBJ: Translate Word Phrases to Inequalities

1. Which inequality matches the sentence?
When a number is decreased by 4, the result is more than 4.

$$[A]x - 4 > 4$$

$$[B]x + 4 < 4$$

$$[C]x - 4 < 4$$

$$[D]x + 4 > 4$$



# AM OBJ: Translate Word Phrases to Inequalities

2. Which inequality matches the sentence? When a number is divided by 2, and the quotient is increased by 3, the result is more than 10.

[A] 
$$\frac{x+3}{2} < 10$$
 [B]  $\frac{x+3}{2} > 10$   
[C]  $\frac{x}{2} + 3 > 10$  [D]  $\frac{x}{2} + 3 < 10$ 

4

# AM OBJ: Translate Word Phrases to Inequalities

3. Which inequality matches the sentence? When a number is increased by 3 and the quantity is divided by 5. The quotient is less then or equal to 10.

$$[A] \xrightarrow{x+3} \le 10 \quad [B] \frac{x+3}{5} < 10$$

$$[C] \frac{x}{5} + 3 \ge 10$$
  $[D] \frac{x}{5} + 3 \le 10$ 

4

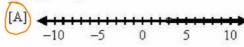
When a number is decreased by 7 and the quanitity is multiplied by 3, the product is less than 25.

(x-7)3<25

#### AM: Solve Linear Inequalities

2. If the replacement set is the set of integers, find the solution set for the inequality  $x + 11 \ge 12$ .

[A] (1, 2, 3, ...) [X] (1) [23, 24, 25, ...) [X] (-1, 0, 1, ...)


X+11≥12 -11 -11

\$213,4,...

AM: Graph Inequalities (number line)

Graph:

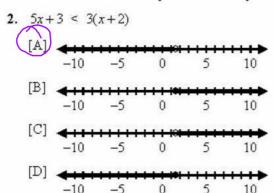
1.  $\frac{x}{8} - \frac{x}{3} < \frac{x-8}{8}$ 



- 8x2-24 8) -8 V 3

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Isolate Simplify


Simplify

24 x - 248 x x 24(x-8)

3x - 8x < 3x - 24-5x < 3x - 24

> -814-24 6 -811de P-4

AM: Graph Inequalities (number line)



Isolate Simplify

5x+3x+3(x+1) 5x+3x+3x+4 -3x-3-3x-3 2x+3 2x+3Slide P-47

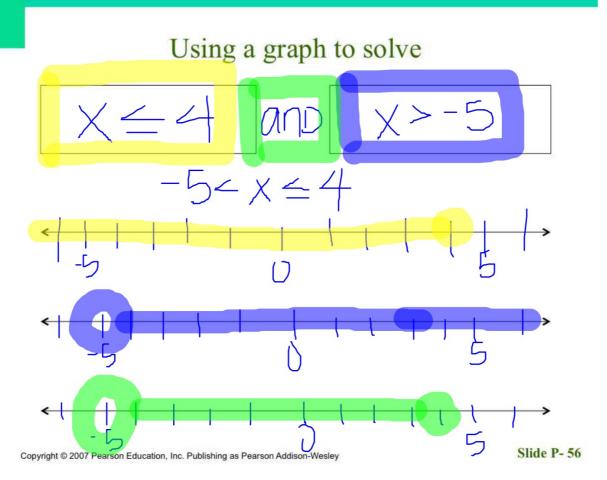
#### Objective

- Solve and graph different compound inequalities and orally differentiate the steps necessary for each using comparison words in a group.
- Success Criteria
  - Discuss the values included in 'and' statements and 'or' statement
  - Describe the graphical differences between 'and' & 'or' inequalities
- Vocabulary: compound, 'and', 'or'

Slide P-53

Compound Inequalities involve mathematical logic statements which use the everyday words [and] and [or] in highly refined way.

Which sentence is less restrictive, meaning that more people can participate in the game?


- A. To play high school team soccer at the recreation center a player must be at least 16 years old [or] at least five feet tall.
- B. To play high school team soccer at the recreation center a player must be at least 16 years old [and] at least five feet tall.

1. Solve:

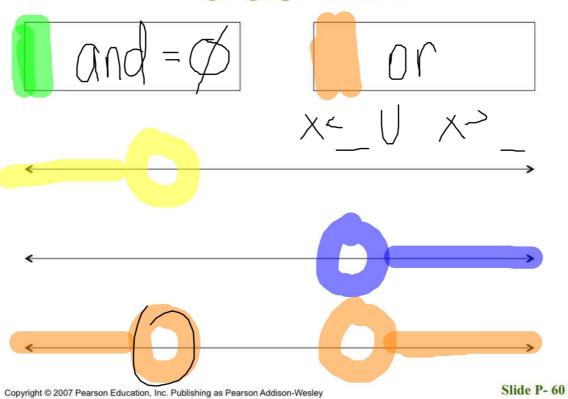
$$[A] - 5 < x \le 4$$
  $[B] - 1 \le x < 4$ 

$$[C] -1 < x \le 4$$
  $[D] -5 \le x < 4$ 





1. Solve: 
$$x + 3 \le 5$$
 or  $-x < 2$   
 $-3 - 3$   $-1 < 1$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 2$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 4$   
 $x + 3 \le 5$  or  $-x < 6$ 


2. Solve:

$$x + 2 > -2$$
 and  $-x + 2 < -4$ 

$$[A] - 4 < x < 6$$
  $[B] x < 6$ 

[C] 
$$6 < x$$
 [D] no solution

# Using a graph to solve



#### 4. Solve:

$$-7 \le -4x - 6 \le 12 
+6 +6 +6$$

$$-1 \le -4x \le 18 
-4 -4 -4$$

$$\frac{1}{4} \ge x \ge -4\frac{1}{2}$$

$$-4\frac{1}{2} \le x \le 4$$

Slide P- 65