WRITE IT Sentence Frame: Sets without Closure

he set	is a subset	a subset of the real	
numbers, which	is not closed unde	er	
	We provide	a	
counterexample	to prove our clain	n. The	
numbers	and	are	
elements of	, but if we		
	2.8	then the result	
is	, which is a real number but not		
a member of the			

(-00, 8]

X is less than or equal to 8.

Closed, because the endpoint has a bracket and it is unbounded - means infinity covers all points left.

Unbounded because one side gresto infinity.

- 1. Which property is illustrated by the following statement? (a+b) c = (b+a) c
 - [A] commutative property

[B] inverse property

[C] distributive property

[D] associative property

LO: The Order of de changes between expressions, which means this is an illustration of the OMM ATTIME property.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

- 2. Which property is illustrated by the following statement? If t > u and u > v, then t > v.
 - [A] Commutative Property of Inequality
- [B] Associative Property of Multiplication

Slide P-52

- [C] Transitive Property of Inequality
- [D] Associative Property of Addition

Equality

If $u=v \neq \sqrt{=\omega}$ then $u=\omega$

LO: This is an example of the Hansity C property.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

- 3. What property is illustrated by the fact that (47 + 92) + 46 = 47 + (92 + 46)?
 - [A] Closure Property for Addition
- [B] Associative Property for Addition
- [C] Commutative Property for Addition
- [D] Identity Property for Addition

between expressions, which means this is an illustration of the Q550C14TV2 property.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

- **4.** What property is illustrated by the fact that $43 \cdot 36 = 36 \cdot 43$?
 - [A] associative property of multiplication
- [B] distributive property
- [C] commutative property of multiplication
- [D] identity property of multiplication

between expressions, which means this is an illustration of the ________ property

roperties of the Additive Inverse

Let u, v, and w be real numbers, variables, or algebraic expressions.

Property

Examples

1.
$$-(-u) = u$$

2.
$$(-u)v = u(-v) = -uv \left(-\frac{1}{2}\right)(\frac{3}{2}) = \frac{7}{2}\sqrt{(-\frac{3}{2})}$$

3. $(-u)(-v) = uv \left(-\frac{5}{2}\right)(-\frac{1}{2}) = \frac{5}{2}$

3.
$$(-u)(-v) = uv(-5)(-\sqrt{2}) = 5\sqrt{2}$$

4.
$$(-1)u = -u - (-1)(-1)(-1)$$

Slide P-55

Academic Conversation - Fishbowl

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addisor

a)
$$-4[-3+x] = 6+(x+1)$$
b) $-4[x+(-3)] = 6+(x+1)$
c) $-4[x+(-3)] = (6+x)+1$
e) $-4[x+(-3)] = (6+x)+1$
e) $-4[x+(-3)] = (6+x)+1$
f) $-4[x+(-3)] = (x+6)+1$
f) $-4[x+(-3)] = x+(6+1)$
f) $-4x+12 = x+(6+1)$
h) $-4x+12 = x+7$
f) $-4x+5 = x$
f) $-4x+5$