Today's Objectives

- Orally characterize the unique graphical, numerical, and algebraic properties of exponential functions.
 Synthesize the equation of an exponential function from numeric data using guided notes samples.
- Success Criteria
 - Define Exponential Function
 - Differentiate between exponential decay and exponential growth
 - Describe transformations of exponential functions
- Vocabulary: exponential, base, growth factor, decay factor

Exponential Functions

Let a and b be real number constants.

An **exponential function** in x is a function that can be written in the form $f(x) = a(b^x)$, where a is nonzero, b is positive, and $b \ne 1$.

y=mx+b

The constant a is the **initial value** of f (the value at x = 0), and b is the **base**.

The domain/input of exponential functions are exponents.

The range/output is the base, b, multiplied by itself **[insert exponent here]** times and vertically stretched or shrunk by a factor of a.

Finding an Exponential Function from its Table of Values

Determine formulas for the exponential function g and h whose values are given in the table below.

x	g(x)	h(x)
-2	$^{4/9}) \times 3$	$128 \times \frac{1}{4}$
-1	$4/3$ $\times 3$	$32\sqrt{\frac{1}{1}}$
(0)	4 \\ \ \ \ \ 3	8 $\frac{1}{1}$
1	$12 \times 3 \times 3 \times 3$	$2\sqrt{\frac{4}{4}}$
2	36	1/2 \ ^ 4

Because g is exponential, $g(x) = a \cdot b^x$.

Because g(0) = 4, a = 4.

Because $g(1) = 4 \cdot b^1 = 12$, the base b = 3. So, $g(x) = 4 \cdot 3^x$.

x	g(x)
-2	4/9
-1	$4/3$ $\times 3$ $\times 3$
0	4 4
1	$12\sqrt{\times 3}$
2	36 $\times 3$

Slide 3-7

Because h is exponential, $h(x) = a \cdot b^x$.

Because h(0) = 8, a = 8.

Because $h(1) = 8 \cdot b^1 = 2$, the base b = 1/4. So, $h(x) = 8 \cdot \left(\frac{1}{4}\right)^x$.

<u>x</u>	h(x)
-2	$128 \times \frac{1}{2}$
-1	32 $\times \frac{1}{4}$
0	8 \ 1
1	$2\sqrt{\frac{1}{4}}$ $\times \frac{1}{4}$
2	1/2

Exponential Growth and Decay

For any exponential function $f(x) = a \cdot b^x$ and any real number x, $f(x+1) = b \cdot f(x)$.

If a > 0 and b > 1, the function f is increasing and is an **exponential** growth function. The base b is its growth factor.

If a > 0 and b < 1, the function f is decreasing and is an **exponential** decay function. The base b is its decay factor.

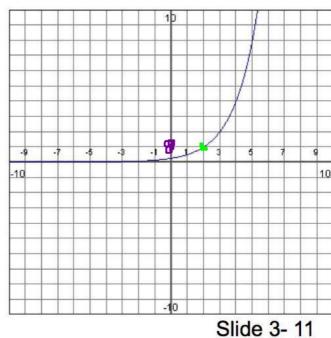
Example Transforming Exponential Functions

Describe how to transform the graph of $f(x) = 2^x$ into the graph of $g(x) = 2^{\frac{1}{2}}$. The graph Shiffs two units right

Example Transforming Exponential Functions

Describe how to transform the graph of $f(x) = 2^x$ into the graph of $g(x) = 2^{x^2}$.

The graph of $g(x) = 2^{x-2}$ is obtained by translating the graph of $f(x) = 2^x$ by 2 units to the right.



Reflections: Transforming Exponential Functions

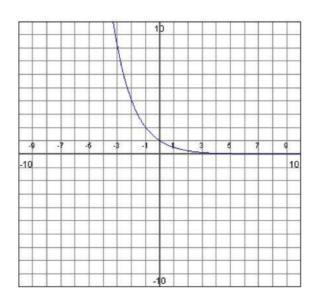
Describe how to transform the graph of $f(x) = 2^x$ into the graph of $g(x) = 2^{-x}$.

oroph Reflects, y. axis

Reflections: Transforming Exponential Functions

Describe how to transform the graph of $f(x) = 2^x$ into the graph of $g(x) = 2^{-x}$.

Since the transformation is applied to x it will effect a horizontal property of the graph, therefore the graph of $g(x) = 2^{-x}$ is obtained by making a horizontal reflection of the graph. So flip $f(x) = 2^x$ across the y-axis to produce $g(x) = 2^{-x}$.



Slide 3-13

Today's Objective

- Assess the relationship between the natural base and logistic functions and use a limit statement sentence frame to write a mathematical analysis of the natural base.
- Success Criteria
 - Define e
 - Explore properties of the exponential function with base e
 - Define a logistic growth function
- Vocabulary: e, natural base, logistic growth function, limit to growth

Slide 2-14

The Natural Base
$$e$$

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

Turn and Talk:

- · When have we used limits? In your experience, what do limits tell us?
- Think about polynomial and rational functions what type of limit is indicated when x approaches infinity?
- Find the limit numerically, and make a conjecture about the value of Euler's constant also called the natural base e.

Report to me:

• Each group must state there answer to the teacher. Slide 3-15

Exponential Functions and the Base e

Any exponential function $f(x) = a \cdot b^x$ can be rewritten as $f(x) = a \cdot e^{kx}$, for any appropriately chosen real number constant k.

If a > 0 and k > 0, $f(x) = a \cdot e^{kx}$ is an exponential growth function.

If a > 0 and k < 0, $f(x) = a \cdot e^{kx}$ is an exponential decay function.

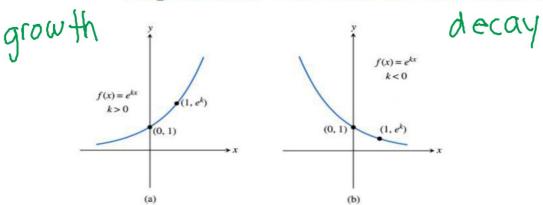
Turn and Talk: What is the relationship between *b*, *k*, and *e*?

Justify your response using the properties of exponents.

Report to me:

 Each group must state there answer to the teacher.

Exponential Functions and the Base e



Turn and Talk:

- · Classify these functions.
- · What will they always have in common?
- Use the properties of exponents to explain why?

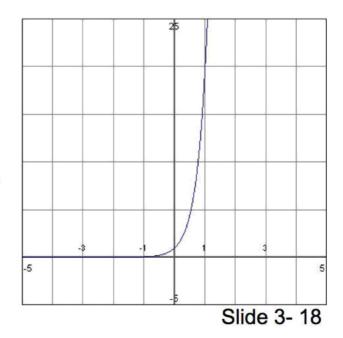
Report to me:

Each group must state there answer to the teacher.

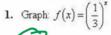
Example Transforming Exponential Functions

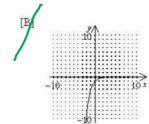
Describe how to transform the graph of $f(x) = e^x$ into the graph of $g(x) = e^{3x}$.

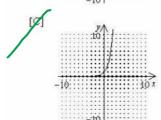
Since the transformation is applied to x it will effect a horizontal property of the graph, therefore the graph of $g(x) = e^{3x}$ is obtained by making a horizontal Shorink of the graph.



AM: Graph exponential functions



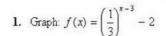




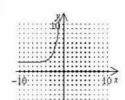


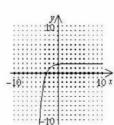
LO: I know by looking at the equation that I have an a = 1 > 0, and a b = 1/2 < 1. This means I have an example of exponential with a y-intercept of 0. Therefore, my answer is 1.

Graph Exponential Functions



M





LO: I know by looking at the equation that a = 1 > 1 > 1, and b = 1/2 < 1 value. This means I have an example of exponential with a y-intercept of 1 lalso have a shift of 2 units and a wall call shift of 2 units 2 units 3 lalso have is 1 lalso have a shift of 3 units 2 units 3 lalso have a shift of 3 units 3 lalso have 3

Report to me:

- Each group must state the answer to the teacher.
- Pick up your AM Practice on Objectives #1 and #2

ne of these