Today's Objectives

- Produce new functions by composing existing functions and evaluate for given values after <u>listening</u> to a step-by-by explanation with key words.
- Success Criteria
 - Define composition and notation
 - Assess functions for compatible domains and ranges
- Vocabulary: composition, compatible

Composition of Functions

Let f and g be two functions such that the domain of f intersects the range of g. The composition f of g, denoted $f \circ g$, is defined by the rule $(f \circ g)(x) = f(g(x))$.

The domain of $f \circ g$ consists of all x-values in the domain of g that map to g(x)-values in the domain of f.

Composition of Functions

Example Composing Functions

Let
$$f(x) = 2^{\mathbf{X}}$$
 and $g(x) = \sqrt{x+1}$. Find

- (a) $(f \circ g)(x)$
- (b) $(g \circ f)(x)$

Let
$$f(x) = 2^x$$
 and $g(x) = \sqrt{x+1}$. Find

(a) $(f \circ g)(x) = f(g(x))$

$$= f(g(x)) = f(g(x))$$

$$= f(g(x)) = f(g(x))$$

Let
$$f(x) = 2^x$$
 and $g(x) = \sqrt{x+1}$. Find

(a) $(g \circ f)(x) = 2$

(b) $(x) = 2^x$

(c) $(x) = 2^x$

Example Composing Functions

Let
$$f(x) = -x^2 + 4$$
 and $g(x) = \sqrt{x}$ Find

(a) $(f \circ g)(x) = f(y(x)) = f(\sqrt{x})$

(b) $(g \circ f)(x)$

$$= -(\sqrt{x})^2 + 4$$

$$= -x + 4$$

$$= -x + 4$$

$$= -x + 4$$

$$= -x + 4$$

AM: Find compositions of 2 functions

1. If $f(x) = x^4$ and $g(x) = 1 - 2x^2$, find g(f(x)).

AM: Find compositions of 2 functions

2. Given
$$f(x) = \frac{x+5}{x}$$
 and $g(x) = x^2 + 4$, find $(g \circ f)(6)$.

AM: Find Composition of 2 functions

3. Given $f(x) = -2x^2$, g(x) = -3x + 7, and $h(x) = \sqrt{x}$, find $[(f+g) \circ h](x)$.

[A] $-2x-3\sqrt{x}+7$ [B] $-2x^2-3\sqrt{x}+7$ [C] $6x+\sqrt{x}+7$ [D] $-2\sqrt{x}-3x+7$

 $[(f+g)\circ h](x) \quad (B\circ (h)(x))$

1) f(x)+g(x) -2x2+-3x+7

B(x)=-20=30+7

-2x-3Vx+7

Today's Objectives

- Algebraically verify in writing that two functions are inverses and produce inverse functions using a step-by-step process and the algebraic definition of an inverse.
- Success Criteria:
 - Understand inverses in terms of dependency
 - Determine if a function is one-to-one
 - Identify graphical properties of inverses
- Vocabulary: inverse

Inverse Relation

The ordered pair (a,b) is in a relation if and only if the pair (b,a) is in the inverse relation.

An inverse relationship represents a change in dependency, meaning that we are changing our dependent and independent variable. This means that x and y change places.

- i.e. (3, -8) becomes (-8, 3)
- Real world example

Horizontal Line Test

The inverse of a relation is a function if and only if each horizontal line intersects the graph of the original relation in at most one point.

Do these functions pass?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Inverse Function

If f is a one-to-one function with domain D and range R, then the **inverse** function of f, denoted f is the function with domain R and range D defined by $f^{-1}(b) = a$ if and only if f(a) = b.

More about Inverses

- We write inverse functions as f⁻¹
- The domain of the original function is the range of the inverse
- The <u>range</u> of the original function is the of the inverse

When can I have an inverse?

- There can only be an inverse when functions are one-to-one.
- One-to-one functions pass the vertical AND horizontal line test
- In relationships, a relationship is a one to one function when both people are only seeing one person.

1. Which of the following is not a one-to-one function?

$$[A] f(x) = x^2 - 2$$

[A]
$$f(x) = x^2 - 2$$
 [B] $f(x) = \frac{1}{5}(x - 2)$ [C] $f(x) = x - 2$ [D] $f(x) = 2x$

$$[C] \quad f(x) = x - 2$$

$$[\mathbb{D}] \quad f(x) = 2x$$

- 2. Which of the following is a one-to-one function?
 - [B] ((9, -4), (8, 5), (5, 8), (1, 1)) [X] ((9, -4), (8, -7), (5, 5), (8, 6)) [X] ((9, -4), (8, 5), (5, 8), (1, 1)) [X] ((9, -4), (8, -7), (5, -2), (1, 4))

3. Determine which of the following are one-to-one functions:

[D] i, ii, and iv only

1. Which of the following is not a one-to-one function?

$$[A] \quad f(x) = -2$$

[A]
$$f(x) = -2$$
 [B] $f(x) = \frac{1}{5}(x+2)$ [C] $f(x) = x+2$ [D] $f(x) = -2x$

$$[C] f(x) = x + 2$$

$$[D] f(x) = -2x$$

