Page 98 Example 9 (a)

Checking Functions for Symmetry about the y-axis $f(-x) = (-x)^2 - 3 = x^2 - 3$

Conjecture: $f(x) = x^2 - 3$ is an even function, because the graph of f is a parabola that is symmetric about the y-axis.

Steps for an Algebraic Proof: Even functions satisfy the relationship f(x) = f(-x) therefore we must determine a rule for f(-x). Compare the rules for f(-x) and f(x) to determine if the relationship holds.

In order to prove f(x) is even, I must show that f(x) = f(x).

 $f(x)=x^2-3$ $f(-x)=(-x)^2-3$ $= x^2-3$

Since | have shown $f(x)=f(-x)=x^2-3$, | can say that the function is even. \Box QE.D

p. 98 Example 9 (c) Checking Functions for Origin Symmetry

Find the rules for f(-x) and -f(x).

$$f(x) = \frac{x^{3}}{4 - x^{2}}$$

$$f(-x) = \frac{(-x)^{3}}{4 - (-x)^{2}} = \frac{-x^{3}}{4 - x^{2}}$$

$$-f(x) = -\frac{1}{4 - (-x)^{2}} = \frac{-x^{3}}{4 - x^{2}}$$

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1-40

a) Since the function that has symmetry with respect to the origin, we can make the conjecture that the conjecture that

Practice

b) In order to prove that $\frac{f(x)}{f(x)}$ is a $\frac{f(x)}{f(x)}$ is a $\frac{f(x)}{f(x)}$ is a $\frac{f(x)}{f(x)}$.

Since $\frac{f(-x)}{f(-x)} = \frac{f(x)}{f(-x)}$, we have shown that $\frac{f(-x)}{f(-x)}$ is an $\frac{\partial f(-x)}{\partial (-x)}$ function.

$$f(x) = \frac{x^3}{4 - x^2}$$

Conjecture: This an	function,
because the graph	has symmetry with
respect to the original	in. Origin symmetry
mean that the refle	ection of the graph of f
over the	or $f(-x)$ is equivalent
to the reflection of	f the graph of f over
the or -	f(x).

Proof:	funct	ions satis	fy the	
algebra	ic relations	ship	•	
therefor	re we must	determin	ne rules	
for	and	By comparing		
the rules for		and	we	
have determine $f(x)$ is		because		
the relationship		holds.		

Example Checking Functions for Symmetry

Tell whether the following function is odd, even, or neither. $f(x) = x^2 + 3$ $f(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Conjecture: This is $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Conjecture: This is $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ that is symmetric about the $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Steps for an Algebraic Proof: Even functions satisfy the algebraic relationship $(-x) = (-x)^2 + 3 = (-x)^$

to determine if the

rules for $\{1/2\}$ and $\{1/2\}$

relationship holds.

AM: Classify Functions as even odd, or neither

1. Which is the graph of neither an even nor an odd function?

Conjecture: The function_____ is even, because the graph of f is symmetric about the_____.

AM: Classify Functions as even odd, or neither

2. Which of the following functions is even?

$$(A) f(x) = 6x^6 + 2x^2 - 5$$

[B]
$$g(x) = |6x+2| - 6$$

$$F(x) = \frac{6x^3}{6x^2 + 5}$$

$$h\left(x\right) = 5x^7 + 2x^3$$

 $f(-x) = 6(-x)^{b} + 2(-x)^{2} - 5$

Conjecture: The function is even, because the graph of f is symmetric about the

Proof: Even functions satisfy the algebraic relationship_______, therefore we must algebraically determine a rule for_______. By comparing the rules for ______ and ______ we determined they are equivalent, which proves our conjecture that ______ is an even function.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

AM: Classify Functions as even odd, or neither

Conjecture: The function is even, because the graph of f is symmetric about the

Proof: Even functions satisfy the algebraic relationship______, therefore we must algebraically determine a rule for______. By comparing the rules for ______ and _____ we determined they are equivalent, which proves our conjecture that ______ is an even function.

Practice

- a) Since the function _____ has symmetry with respect to the _____, we can make the conjecture that _____ is a ____ function.
- b) In order to prove that ____ is a ____ function, we must show that $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$.

 $f(-x) = \frac{1}{5}(-x)^{5} - (-x)^{3} = \frac{1}{5}x^{5} + x^{3}$ $-f(x) = -1(\frac{1}{5}x^{5} - x^{3}) = \frac{1}{5}x^{5} + x^{3}$

Since $\frac{1}{2} = \frac{1}{2}$, we have shown that ____ is a ____ function.