Reading Guide for Function Extrema Minimum

Use the descriptions in Step 2 of the reading guide	The function has a global or (1550 that maximum of when x=1, because 41) or than y values are less than 5. The function has an absolute or global minimum of when x=0, because all other y values are greater than -1.
	The function has a local or Plative man of 2 when X=1.5, because it 5 the greatest y when the internal [0,2] The function has a local or relative minimum of when X=2, because it 15 the lavest y value on the internal [1.5, 4].
	The function is bounded, because $y = y = y = y = y = y = y = y = y = y $

Practice

- Let $f(x) = \frac{1}{\cos(x)}$. Use the graph to answer the following questions.
 - a) What is equation for the vertical asymptote of f?

c) What is the range of f(x)?

$$(-\infty, -\underline{\square} \cup [1, \infty)$$

d) What are the local maximum and minimum values of the

function and where do they occur? Label the points on the graph. There is a local maximum of -1 when x = -TT on the interval [-TT, -D.5TT].

e) On what intervals is the function's graph increasing, decreasing, or constant? Justify with key words in complete sentences.

The function is increasing on the interval [0, 0.517) U(0.517, TT]

The function is decreasing on the interval [-TT,-0.5TT) U(-0.5TT,0]

t) Is the graph bounded above, bounded below, bounded or unbounded? Justify with key words in complete sentences.

The function has y values that go to $\pm \infty$. It the function is unbounded

Counterexample

All bounded functions have absolute extrema.

- If you agree, give a mathematical reason.
- If you disagree, provide a counterexample.

If a function is bounded below, it will have an absolute maximum.

- If you agree, give a mathematical reason.
- If you disagree, provide a counterexample.

■ If a function is bounded above, it will have an absolute maximum.

- If you agree, give a mathematical reason.
- If you disagree, provide a counterexample.

This function has an absolute maximum near the y value 6.5.

- If you agree, give a mathematical reason.
- If you disagree, provide a counterexample.

■ This function has a global minimum near y=-10.

- If you agree, give a mathematical reason.
- If you disagree, provide a counterexample.

■ If a function is bounded above, it can have an absolute minimum.

- If you agree, give a mathematical reason or an example.
- If you disagree, provide a counterexample.

• If a function is bounded below, it can have a relative maximum.

- If you agree, give a mathematical reason or example.
- If you disagree, provide a **counterexample**.

If a function has a global minimum, it is bounded below.

- If you agree, give a mathematical reason or example.
- If you disagree, provide a counterexample.