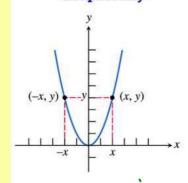
## Symmetry with respect to the y-axis

Example:  $f(x) = x^2$ 

#### Graphically



#### Numerically

| х  | f(x) |  |
|----|------|--|
| -3 | 9    |  |
| -2 | 4    |  |
| -1 | 1    |  |
| 1  | 1    |  |
| 2  | 4    |  |
| 3  | 9    |  |

#### Algebraically

For all x in the domain of f,

$$f(-x) = f(x)$$

Functions with this property (for example,  $x^n$ , n even) are **even** functions.

## Symmetry with respect to the x-axis

Example:  $x = y^2$ 

# Graphically y (x, y) -y (x, -y)

| Numerically |   |  |
|-------------|---|--|
| x           | у |  |

| x | у  |  |
|---|----|--|
| 9 | -3 |  |
| 4 | -2 |  |
| 1 | -1 |  |
| 1 | 1  |  |
| 4 | 2  |  |
| 9 | 3  |  |

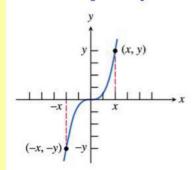
#### Algebraically

Graphs with this kind of symmetry are not functions (except the zero function), but we can say that (x, -y) is on the graph whenever (x, y) is on the graph.

## Symmetry with respect to the origin

Example:  $f(x) = x^3$ 

#### Graphically



#### Numerically

| x  | у   |
|----|-----|
| -3 | -27 |
| -2 | -8  |
| -1 | -1  |
| 1  | 1   |
| 2  | 8   |
| 3  | 27  |

#### Algebraically

For all x in the domain of f,

$$f(-x) = -f(x).$$

Functions with this property (for example,  $x^n$ , n odd) are odd functions.

## Today's Objectives

- Justify a conjecture of the classification of different functions as even, odd, or neither by writing algebraic proofs with a partner.
- Success Criteria
  - Identify different kinds of graph symmetry
  - Use algebraic proofs to defend classification
- Vocabulary: even, odd, neither, symmetry

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

# Page 98 Example 9 (a) Checking Functions for Symmetry about the y-axis

- Reproduce Figure 1.29 by graphing  $f(x) = x^2 3$  on your calculator.
- Set the window ranges as given in the textbook.
- $\blacksquare$  Make a conjecture about the symmetry of f.

## Page 98 Example 9 (a)

Checking Functions for Symmetry about the y-axis  $f(-x) = (-x)^2 - 3 = x^2 - 3$ 

Conjecture:  $f(x) = x^2 - 3$  is an even function, because the graph of f is a parabola that is symmetric about the y-axis.

Steps for an Algebraic Proof: Even functions satisfy the relationship f(x) = f(-x) therefore we must determine a rule for f(-x). Compare the rules for f(-x) and f(x) to determine if the relationship holds.

In order to prove f(x) is even, I must show that f(x) = f(x).

 $f(x)=x^2-3$   $f(-x)=(-x)^2-3$   $= x^2-3$ 

Since | have shown  $f(x)=f(-x)=x^2-3$ , | can say that the function is even.  $\Box$ QE.D

## p. 98 Example 9 (c) Checking Functions for Origin Symmetry

Find the rules for f(-x) and -f(x).

$$f(x) = \frac{x^3}{4 - x^2}$$

$$f(-x) = \frac{(-x)^3}{4 - (-x)^3} = \frac{-x^3}{4 - x^2}$$
Since  $f(-x) = -f(x)$ 

$$f(x) = \frac{(-x)^3}{4 - (-x)^3} = \frac{-x^3}{4 - x^2}$$
Function is odd.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1-40

$$f(x) = \frac{x^3}{4 - x^2}$$

| Conjecture: This an     | function,                |
|-------------------------|--------------------------|
| because the graph       | has symmetry with        |
| respect to the original | in. Origin symmetry      |
| mean that the refle     | ection of the graph of f |
| over the                | or $f(-x)$ is equivalent |
| to the reflection of    | f the graph of $f$ over  |
| the or -                | f(x).                    |

| <b>Proof:</b>            | functions satisfy the |          |             |  |
|--------------------------|-----------------------|----------|-------------|--|
| algebra                  | ic relations          | ship     | •           |  |
| therefor                 | re we must            | determin | ne rules    |  |
| for                      | and                   | B        | y comparing |  |
| the rules for            |                       | and      | we          |  |
| have determine $f(x)$ is |                       | because  |             |  |
| the relationship         |                       |          | holds.      |  |

Example Checking Functions for Symmetry

Tell whether the following function is odd, even, or neither.  $f(x) = x^2 + 3$   $f(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Conjecture: This is  $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Conjecture: This is  $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ that is symmetric about the  $(-x) = (-x)^2 + 3 = (-x)^2 + 3$ Steps for an Algebraic Proof: Even functions satisfy the algebraic relationship  $(-x) = (-x)^2 + 3 = (-x)^$ 

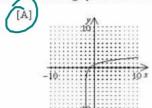
to determine if the

rules for  $\{1/2\}$  and  $\{1/2\}$ 

relationship holds.

## AM: Classify Functions as even odd, or neither

1. Which is the graph of neither an even nor an odd function?









**Conjecture:** The function\_\_\_\_\_ is even, because the graph of f is symmetric about the\_\_\_\_\_.

## AM: Classify Functions as even odd, or neither

2. Which of the following functions is even?

(A) 
$$f(x) = 6x^6 + 2x^2 - 5$$

[B] 
$$g(x) = |6x+2| - 6$$

$$F(x) = \frac{6x^3}{6x^2 + 5}$$

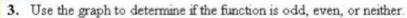
$$[x] \quad h(x) = 5x^7 + 2x^3$$

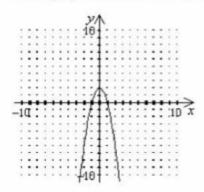
 $f(-x)=6(-x)^{6}+2(-x)^{2}-5=6x^{6}+2x^{2}-5$ 

- **Conjecture:** The function (f) is even, because the graph of f is symmetric about the (f).
- **Proof:** Even functions satisfy the algebraic relationship  $\frac{1}{2}$  therefore we must algebraically determine a rule for  $\frac{1}{2}$ . By comparing the rules for  $\frac{1}{2}$  and  $\frac{1}{2}$  we determined they are equivalent, which proves our conjecture that  $\frac{1}{2}$  is an even function.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

## AM: Classify Functions as even odd, or neither





Conjecture: The function is even, because the graph of f is symmetric about the

Proof: Even functions satisfy the algebraic relationship\_\_\_\_\_\_, therefore we must algebraically determine a rule for\_\_\_\_\_\_. By comparing the rules for \_\_\_\_\_\_ and \_\_\_\_\_ we determined they are equivalent, which proves our conjecture that \_\_\_\_\_\_ is an even function.

## $f(x) = \frac{1}{5} x^5 - x^3$

### Practice

- a) Since the function  $\frac{f(x)}{f(x)}$  has symmetry with respect to the  $\frac{f(x)}{f(x)}$ , we can make the conjecture that  $\frac{f(x)}{f(x)}$  is an odd function.
- b) In order to prove that  $\frac{f(x)}{f(x)}$  is an odd function, we must show that  $\frac{f(x)}{f(x)} = \frac{1}{f(x)}$ .  $\frac{1}{5}(-x)^5 (-x)^3 = -\frac{1}{5}x^5 + x^3$

 $f(-x) = \frac{1}{5}(-x)^5 - (-x)^3 = -\frac{1}{5}x^5 + x^3$   $-f(x) = -\frac{1}{5}(-x)^5 - (-x)^3 = -\frac{1}{5}x^5 + x^3$ 

Since  $\frac{f(x)}{f(x)} = \frac{f(x)}{f(x)}$ , we have shown that  $\frac{f(x)}{f(x)}$  is an integral function.