#### AM: Domain & range, functions

1. Find the domain and range: y = (x-0) + 8[A] domain:  $\{x \mid x \ge 6\}$ , range:  $\{y \mid y \ge 8\}$ [B] domain:  $\{x \mid x \ge 0\}$ , range:  $\{y \mid y \ge 8\}$ [D] domain:  $\{x \mid x \ge 0\}$ , range:  $\{y \mid y \ge 0\}$ [D] domain:  $\{x \mid x \ge 0\}$ , range:  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbers  $\{y \mid y \ge 0\}$ [D] the domain is the set of numbe



x3y=25

N=5

Doman: 48

Doman: 48

| LO: | The range is the set of numbers |  |
|-----|---------------------------------|--|
| {}  | }, because those are the        |  |
| or  | values of the relation.         |  |

# AM: Domain & range, functions

| 3. | Find the domain and range of the relation $\{(x, y) \mid 2x < 12\}$ .                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | [A] domain = $\mathbf{R}$ ; range = $\{y \mid y < 12\}$ (B) domain = $\{x \mid x < 6\}$ ; range = $\mathbf{R}$                                                |
|    | [C] domain = $\{x \mid x < 12\}$ ; range = $\{y \mid y < 6\}$ [D] domain = $\mathbb{R}$ ; range = $\{y \mid y < 6\}$                                          |
|    | [C] domain = $\{x \mid x < 12\}$ ; range = $\{y \mid y < 6\}$ [D] domain = $\mathbb{R}$ ; range = $\{y \mid y < 6\}$ [X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| I  | O: The domain is the set of numbers {}},                                                                                                                      |
|    | pecause those are the, or x values of the relation.                                                                                                           |
| T  | The range is the set of numbers { }, because }                                                                                                                |
|    | hose are the, or y values of the relation.                                                                                                                    |

### AM: Domain & range, functions

- 4. Determine the domain:  $h(x) = \frac{2x}{x(x^2 16)}$ 
  - (A)  $\{x \mid x \neq \pm 4, x \neq 0\}$

[B]  $\{x \mid x \neq \pm 4\}$ 

- [C]  $\{x | x \neq \pm 16, x \neq 0\}$  [D]  $\{x | x \neq 4\}$  b=0  $X(X^2-|b|) \neq 0$   $X^2+|b|$   $X \neq 0$   $X^2-|b| \neq 0$   $X^2+|b|$   $X \neq 0$   $X^2+|b|$

LO: The domain is the set of numbers

\_}, because those are the

or x values of the relation.

#### Today's Objectives

- Orally describe and evaluate intervals of continuity in functions and relate to asymptotes using key words in small groups.
- Success Criteria
  - Identify different kinds of continuity
  - Define asymptotes and their key features
  - Use graphical representations to justify solutions
- Vocabulary: asymptote, continuity, discontinuity drs = not



# Example Identifying Points of Discontinuity

Which of the following figures shows functions that are discontinuous at x = 2?





# Example Identifying Points of Discontinuity

Which of the following figures shows functions that are discontinuous at x = 2?





The function on the right is not defined at x = 2 and can not be continuous there. This is a removable discontinuity.

#### Vertical Asymptotes

The line x = a is a vertical asymptote of the graph of a function y = f(x) if f(x) approaches a limit of  $+\infty$  or  $-\infty$  as x approaches a from either direction.

# Vertical Asymptotes appear when we have Infinite discontinuity

Slide 1-44



\*Notice that vertical asymptotes are examples of infinite discontinuities and are NOT in the domain.



The line y = b is a horizontal asymptote of the graph of a function y = f(x) if f(x) approaches a limit of b as x approaches  $+\infty$  or  $-\infty$ .





# \*Notice that horizontal asymptotes are NOT in the range

# Math Joke

• What is an asymptote's favorite song?

# Answer Can't touch this!



## Today's Objectives

- Determine intervals of increase and decrease for various functions and write in interval or inequality notation using sentence frames.
- Success Criteria
  - Define increasing, decreasing, and constant
  - Graph functions using graphing utility
  - Use graph characteristics to draw conclusions
- Vocabulary: increasing, decreasing, constant

# Increasing Function on an Interval

A function f is increasing on an interval if, for any two points in the interval, a positive change in x results in a positive change in f(x).

(As x increases, y increases).



## Constant, Increasing and Decreasing Functions

LO: The function is an increase as the input x increases from -ix the functions corresponding Output value, y, is getting bigger, going up, increasing all the time.



# Decreasing Function on an Interval

A function f is decreasing on an interval if, for any two points in the interval, a positive change in x results in a negative change in f(x).



(As x increases, y decreases).

## Constant, Increasing and Decreasing Functions

is a <u>lectersity</u> function because as the input x increases from the functions <u>Output</u> value, y, is getting smaller, going down in values, decreasing all the time.



f(x)  $\phi(x)$  g(x) h(x)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1-22