Today's Objectives

- Orally describe and evaluate intervals of continuity in functions and relate to asymptotes using key words in small groups.
- Success Criteria
 - Identify different kinds of continuity
 - Define asymptotes and their key features
 - Use graphical representations to justify solutions
- Vocabulary: asymptote, continuity, discontinuity

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1- 19

Example Identifying Points of Discontinuity

Which of the following figures shows functions that are discontinuous at x = 2?

Example Identifying Points of Discontinuity

Which of the following figures shows functions that are discontinuous at x = 2?

The function on the right is not defined at x = 2 and can not be continuous there. This is a removable discontinuity.

Vertical Asymptotes

The line x = a is a vertical asymptote of the graph of a function y = f(x) if f(x) approaches a limit of $+\infty$ or $-\infty$ as x approaches a from either direction.

Vertical Asymptotes appear when we have Infinite discontinuity

Slide 1-44

*Notice that vertical asymptotes are examples of infinite discontinuities and are NOT in the domain.

The line y = b is a horizontal asymptote of the graph of a function y = f(x) if f(x) approaches a limit of b as x approaches $+\infty$ or $-\infty$.

*Notice that horizontal asymptotes are NOT in the range

Math Joke

• What is an asymptote's favorite song?

Answer Can't touch this!

Today's Objectives

- Determine intervals of increase and decrease for various functions and write in interval or inequality notation using sentence frames.
- Success Criteria
 - Define increasing, decreasing, and constant
 - Graph functions using graphing utility
 - Use graph characteristics to draw conclusions
- Vocabulary: increasing, decreasing, constant

Increasing Function on an Interval

A function f is increasing on an interval if, for any two points in the interval, a positive change in x results in a positive change in f(x).

(As x increases, y increases).

Constant, Increasing and Decreasing Functions

LO: The function is an increase as the input x increases from -ix the functions corresponding Output value, y, is getting bigger, going up, increasing all the time.

Decreasing Function on an Interval

A function f is decreasing on an interval if, for any two points in the interval, a positive change in x results in a negative change in f(x).

(As x increases, y decreases).

Constant, Increasing and Decreasing Functions

is a <u>lectersity</u> function because as the input x increases from the functions <u>Output</u> value, y, is getting smaller, going down in values, decreasing all the time.

f(x) $\phi(x)$ g(x) h(x)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 1-22

Constant Function on an Interval

A function f is **constant** on an interval if, for any two points in the interval, a positive change in x results in a zero change in f(x).

(As x increases, y stays the same).

