AM: Domain and range, relations and functions

[A] (-4, -6, 4)

[B] $\{3, -5, 4\}$

[C] (3, -5, 1) [D] (-4, -6, 1)

LO: The domain is the set of numbers

 $\{ -4-6,4 \}$, because those are the inputs or x values of the relation.

AM: Domain and range, relations and functions

Find the domain and range:

- 2. $\{(x, y)|y=7+x\}$
 - [A] $D = \{all \ real \ numbers\}; \ R = \{all \ real \ numbers\}$
 - [B] $D = \{-7 \le x \le 7\}$; $R = \{all \text{ real numbers}\}$
 - [C] $D = \{all real numbers\}; R = \{x \mid x \ge -7\}$
 - [D] $D = \{x \mid x \ge -7\}$; $R = \{\text{all real numbers}\}$

LO: The domain is the set of numbers

AM: Domain and range, relations and functions

3.

LO: The domain is the set of numbers { (),), because those are the inputs, or x values of the relation.

The range is the set of numbers { \(\bigcup_1 \) \(\bigcup_2 \) \(\bigcup_2 \) \(\bigcup_3 \) because those are the \(\bigcup_1 \) \(\bigcup_2 \) \(\bigcup_3 \) or y values of the relation.

- [A] $D = \{y | y \le 2\}$ $R = \{y | y \text{ is a real number}\}$
- $\begin{bmatrix} C \end{bmatrix} D = \{x \mid x \text{ is a real number} \}$ $R = \{y \mid y \ge 2\}$
- [B] $D = \{x \mid x \text{ is a real number}\}$ $R = \{y \mid y \text{ is a real number}\}$
- [D] $D = \{x \mid x > 2\}$ $R = \{y \mid y > 2\}$

Agreement

Unless we are dealing with a model that necessitates a restricted domain, we will assume that the domain of a function defined by an algebraic expression is the same as the domain of the algebraic expression, the implied domain.

For models, we will use a domain that fits the situation, the relevant domain.

Slide 1-10

Process for Finding a Domain

- Look at the functions for things that cause mathematical problems.
 - Do I have any square roots? (Can't be negative)
 - Do I have a denominator? (Can't be zero)
- Set up equation/inequality
 - For square roots, the radicand ≥ 0
 - For fractions, the denominator = 0
- Write answer using interval notation
 - *Remember you can put intervals together by writing a U between them (U means 'union')

Example Finding the Domain of a Function

Find the domain of the function.

$$f(x) = \sqrt{x+2}$$

Example Finding the Domain of a Function

Find the domain of the function.

$$f(x) = \sqrt{x+2}$$

Solve algebraically:

The expression under a radical may not be negative.

$$x + 2 \ge 0$$

$$x \ge -2$$

The domain of f is the interval $[-2, \infty)$.

Example Finding the Range of a Function

Find the range of the function $f(x) = \frac{2}{x}$.

Solve Graphically:

[-5, 5] by [-3, 3]

The graph of $y = \frac{2}{x}$ shows that the range is all real numbers except 0.

The range in interval notation is $(-\infty,0) \cup (0,\infty)$.

Example Finding the Domain and Range of a Function

Find the domain and range of the function $f(x) = \frac{1}{2x-3}$.

Solve Graphically:

The graph of $y = \frac{2}{2x-3}$ shows that the domain is all real numbers except $\frac{3}{2}$.

The domain in interval notation is $\left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$.

Example Finding the Domain and Range of a Function

Find the domain and range of the function $f(x) = \frac{1}{2x^2}$.

2x-3+0 [x+3] +3 +3 [x+3] 2x=3

How can we find the domain analytically, that means without looking at a graph or table?

D:(-0,3)U(3,0) P:(-0,0)U(0,0)

Example Finding the Domain and Range of a Function

Find the domain and range of the function $f(x) = \sqrt{2x+5} - 7$

2. Find the range of the relation $A = \{(x,y) | x^2 + y^2 = 64\}$.

[B]
$$-64 \le y \le 64$$

[C]
$$-64 \le x \le 64$$

[D]
$$-8 \le x \le 8$$

LO: The range is the set of numbers

 $\{-\frac{8}{2}\}$, because those are the _____ or values of the relation.

3.	Find the domain and range of the relation $\{(x, y) \mid 2x < 12\}$.		
	[A]	domain = \mathbf{R} ; range = $\{y \mid y < 12\}$	[B] domain = $\{x \mid x < 6\}$; range = R
	[C]	$domain = \{x \mid x < 12\}; range = \{y \mid y < 6\}$	[D] domain = \mathbf{R} ; range = $\{y \mid y < 6\}$
			2×12
			2 2
			X26

LO: The domain is the set of n	umbers {}},
because those are the	, or x values of the
relation.	
The range is the set of number	s {}, because
those are the, or y	values of the relation.

- 4. Determine the domain: $h(x) = \frac{2x}{x(x^2 16)}$
 - [A] $\left\{x \mid x \neq \pm 4, x \neq 0\right\}$

[B] $\{x \mid x \neq \pm 4\}$

[C] $\left\{x \mid x \neq \pm 16, x \neq 0\right\}$

[D] $\{x \mid x \neq 4\}$

 $X(x^2-16)\neq 0$

X#0 X

X2-16+0

LO: The domain is the set of numbers

{_____}}, because those are the _____

or x values of the relation.