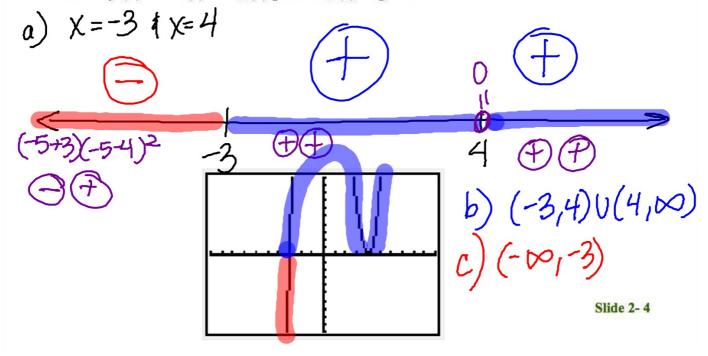
Today's Objective

- Read an inequality problem and choose appropriate interval solutions for polynomial and rational inequalities using sign charts and graphical methods.
- Success Criteria
 - Set up appropriate inequalities for determining where an expression is positive or negative.
 - Construct and use a sign chart to solve inequalities involving polynomials
 - Construct and use a sign chart to solve inequalities involving rational expressions

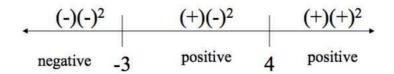
Polynomial Inequalities


A polynomial inequality takes the form f(x) > 0, $f(x) \ge 0$, f(x) < 0, $f(x) \le 0$ or $f(x) \ne 0$, where f(x) is a polynomial.

To solve f(x) > 0 is to find the values of x that make f(x) positive.

Q To solve f(x) < 0 is to find the values of x that make f(x) negative.

Example Finding where a Polynomial is Zero, Positive, or Negative


Let $f(x) = (x+3)(x-4)^2$. Determine the real number values of x that cause f(x) to be (a) zero, (b) positive, (c) negative.

Example Finding where a Polynomial is Zero, Positive, or Negative

Let $f(x) = (x+3)(x-4)^2$. Determine the real number values of x that cause f(x) to be (a) zero, (b) positive, (c) negative.

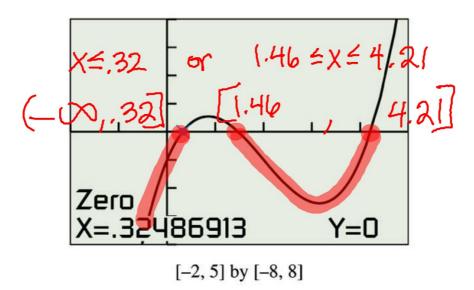
(a) The real zeros are at x = -3 and at x = 4 (multiplicity 2). Use a sign chart to find the intervals when f(x) > 0 and f(x) < 0.

- (b) f(x) > 0 on the interval $(-3,4) \cup (4,\infty)$.
- (c) f(x) < 0 on the interval $(-\infty, -3)$.

Example Solving a Polynomial Inequality Graphically

Solve $x^3 - 6x^2 \le 2 - 8x$ graphically. +8x-2 -2 +8x

 $X^3 - 6x^2 + 8x - 2 \le C$ y_1

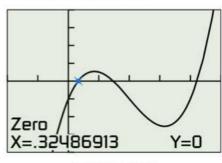

Example Solving a Polynomial Inequality Graphically

Solve $x^3 - 6x^2 \le 2 - 8x$ graphically.

Rewrite the inequality:

X3-6x2+8x-2 < 0 × 0 or Negative

Find the zeros of the function graphically:


Slide 2-7

Example Solving a Polynomial Inequality Graphically

Solve $x^3 - 6x^2 \le 2 - 8x$ graphically.

Rewrite the inequality $x^3 - 6x^2 + 8x - 2 \le 0$.

Let $f(x) = x^3 - 6x^2 + 8x - 2$ and find the real zeros of f graphically.

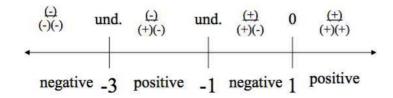
[-2, 5] by [-8, 8]

The three real zeros are approximately 0.32, 1.46, and 4.21. The solution consists of the x values for which the graph is on or below the x-axis. The solution is $(-\infty, 0.32] \cup [1.46, 4.21]$.

Example Creating a Sign Chart for a Rational Function

Let $r(x) = \frac{x+1}{(x+3)(x-1)}$. Determine the values of x that cause r(x) to be

(a) zero, (b) undefined, (c) positive, and (d) negative.


a)
$$X=-1$$
 c) $(-3,-1)$ $U(1,\infty)$
b) $X=-3$ $X=1$ d) $(-\infty,-3)$ $U(-1,1)$

Slide 2-9

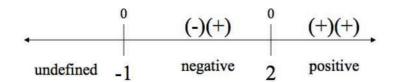
Example Creating a Sign Chart for a Rational Function

Let $r(x) = \frac{x+1}{(x+3)(x-1)}$. Determine the values of x that cause r(x) to be

- (a) zero, (b) undefined, (c) positive, and (d) negative.
- (a) r(x) = 0 when x = -1.
- (b) r(x) is undefined when x = -3 and x = 1.

(c)
$$(-3,-1) \cup (1,\infty)$$

(d)
$$(-\infty, -3) \cup (-1, 1)$$


Example Solving an Inequality Involving a Radical

Solve $(x-2)\sqrt{x+1} \le 0$.

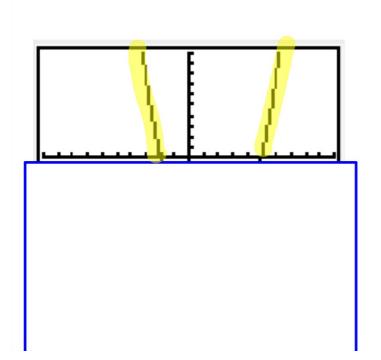
Example Solving an Inequality Involving a Radical

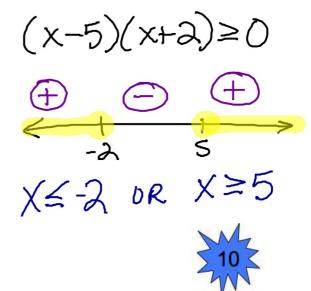
Solve $(x-2)\sqrt{x+1} \le 0$.

Let $f(x) = (x-2)\sqrt{x+1}$. Because of the factor $\sqrt{x+1}$, f(x) is undefined if x < -1. The zeros are at x = -1 and x = 2.

 $f(x) \le 0$ over the interval [-1,2].

AM: Solve Polynomial Inequalities

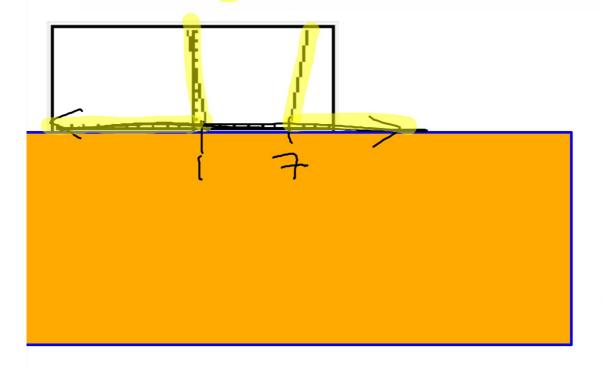

1. Identify the solution set for the inequality: $x^2 - 3x \ge 10$


 $[A] -5 \le x \le 2$

[B] $x \le -5$ or $x \ge 2$

[C] $-2 \le x \le 5$ [D] none of these

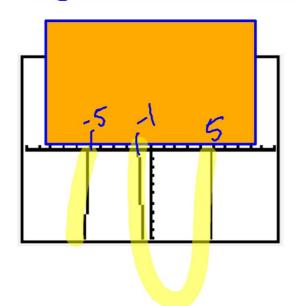
 $X^{2}-3x-10 \ge 0$

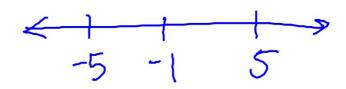


AM: Solve Polynomial Inequalities

2. Solve: $x^2 - 8x + 7 > 0$

[A] -7 < x < -1 [B] x < 1 or x > 7 [C] x < -7 or x > -1 [D] 1 < x < 7

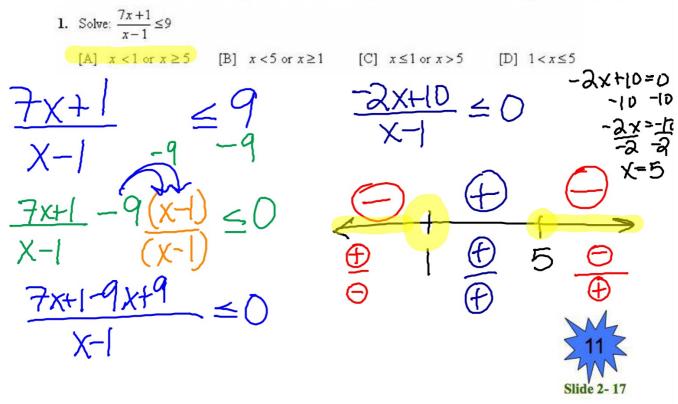

AM: Solve Polynomial Inequalities


3. Identify the solution for the inequality: $x^3 + x^2 - 25x - 25 < 0$

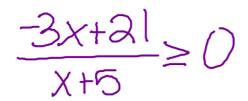
[A]
$$(-\infty, -5) \cup (-1, 1)$$

[B]
$$\left(-2, -\frac{1}{2}\right) \cup \left(\frac{1}{2}, \infty\right)$$

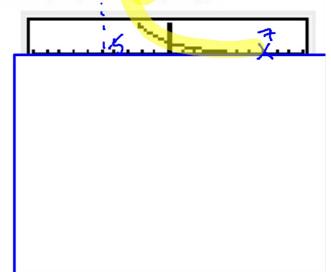
[D]
$$\left(-\frac{3}{2}, 1\right) \cup \left(\frac{3}{2}, \infty\right)$$



AM: Solve Polynomial Inequalities 4. Solve: $x^2 - 7x \ge 18$



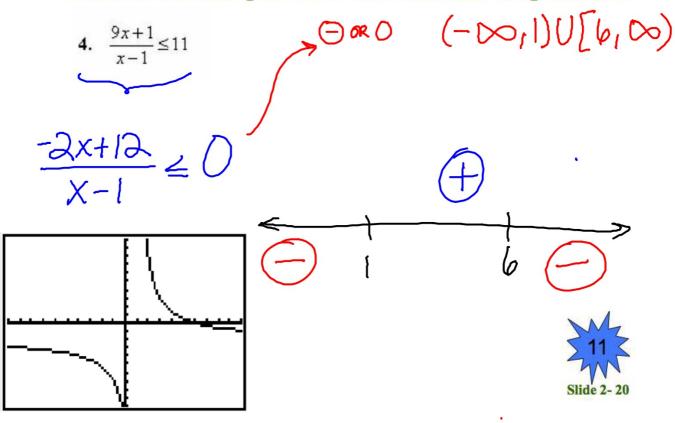



2. Find the solution set in interval notation: $\frac{x+41}{x+5} \ge 4$

$$[A] \ \left(-\infty,\ -5\right) \cup \left[41,\,\infty\right) \qquad [B] \ \left(-5,\,41\right]$$

$$[B] (-5, 41]$$

Solve:
$$\frac{21}{20} = \frac{21}{5}x + \frac{19}{70} \ge 5x - \frac{6}{5}$$
. 2024


[A] $x \le \frac{8}{13}$ [B] $x \le \frac{2}{3}$ [C] $x \ge \frac{8}{13}$ [D] none of these

[A]
$$x \le \frac{8}{13}$$

[B]
$$x \le \frac{2}{3}$$

[C]
$$x \ge \frac{8}{13}$$

1. Solve: $\frac{(x-5)(x+3)}{x-3} \le 0$

[A] $x \le -3$ or $3 < x \le 5$

[B] $3 \le x \le -5$

[C] $x \le -3$ or $x \ge -5$

[D] $x \ge 5$ or $-3 \le x < 3$

2. Identify the solution set of the inequality: $\frac{7x+1}{x-1} \le 9$

[A] x≥5

[B] $1 < x \le 5$ [C] x < 1 or $x \ge 5$ [D] $1 \le x \le 5$

3.
$$\frac{(x-7)(x+4)}{x-3} \ge 0$$

4.
$$\frac{x+1}{x-1} \le 3$$

