AM: WP: Quadratic Equations

2. A rock is thrown sky word from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after the rock is thrown is given by $d = -16t^2 - 2t + 835$. How long after the rock is thrown is (t 340 feet from the ground?

[A]
$$\frac{45}{8}$$
 s

[B]
$$\frac{9}{2}$$
 s

[C]
$$\frac{11}{2}$$
 s

[D] none of these

$$d = -16t^{2} - 2t + 835$$

$$340 = 16t^{2} - 2t + 835$$

$$-340$$

$$-340$$

$$0 = -16t^{2} - 2t + 495$$

$$0 = -16t^{2} - 2t + 495$$

$$0 = -16t^{2} - 2t + 495$$

-45/s

21 Slide 2- 140

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

AM: WP: Quadratic Equations

1. The perimeter of a rectangular concrete slab is 110 feet, and its area is 624 square feet. What is the length of the longer side of the slab?

[A] 37 ft

[B] 40 ft

[C] 42 ft

[D] none of these

Variable and Equation Definitions (with units)

21+2w=110

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley - / b = 55 C= 12 life 2-141

7
322
ł
l
1
- 142

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

AM: WP: Quadratic Equations

4. The number of new cars purchased in a city can be modeled by the equation $C = 22t^2 + 192t + 3689$, where C is the number of new cars and t = 0 corresponds to the number of new cars purchased in 1970. In what year will the number of new cars reach 26,000?

[A] 1979 (B) 1997 [C] 1984 [D] 2047 $26000 = 22t^2 + 192t + 3689$ -26000 - 26000 $0 = 22t^2 + 192t - 22311$

 $a=22 b=[92 c=-223[1 -192 \pm 1414.3]$

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 2- 143

Practice Quiz #2

- 2. A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after the rock is thrown is given by $d = -16t^2 5t + 50$.
 - a) State the initial velocity and initial height of the rock, use this information to describe the vertical path the rock travels. (Use correct units!)

The initial velocity is $\frac{-5}{5}$ the initial height is $\frac{50}{5}$, therefore...

b) Use an appropriate analytical method to determine
the maximum height of the rock and justify your answer
in a complete sentence.
The maximum height of the rock is $50 \pm$, which
is the same as the initial height of the
rock or the <u>V-Mercept</u> of the graph,
because the rock only moves downward from
·
The maximum height of the rock is, which
is the same as the Volle of the vollex of the
parabola, because
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

L

c) Use parts a. and b. to state the relevant domain and
range for the physics experiment and justify your answer
in a complete sentence.
Since the experiment starts when $t = 0$ and
stops when $t = 1.625$, the domain of the function is
$\boxed{\begin{array}{c} \boxed$
rock is and the maximum height of the rock is
the range of the function is
[0,50]
-(bt-5t+50=0
$-(6t^2-5t+50=0)$ $a=-(6 b=-5 c=50)$ $-(93)$
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley