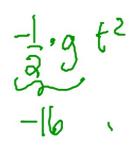
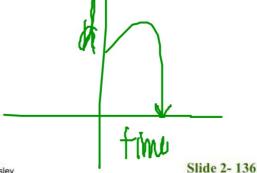
Vertical Free-Fall Motion

The **height** s and vertical **velocity** v of an object in free fall are given by

$$s(t) = -\frac{1}{2}gt^2 + v_0t + s_0$$
 and $v(t) = -gt + v_0$,

where t is time (in seconds), $g \approx 32$ ft/sec² ≈ 9.8 m/sec² is the **acceleration due to gravity**, v_0 is the *initial vertical velocity* of the object, and s_0 is its *initial height*.


$$d = -16t^2 + 12t + 47$$


 $d = -16t^{2} + 12t + 47$ • Distance in **100**, time in seconds

• Acceleration =
$$\frac{-32}{500}$$
 ft/sec²

Initial Height = __

■ What does this look like?

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

$$d = -13t^2 - 2t + 51$$

- Distance in meters, time in seconds
- Acceleration = $-26 \,\mathrm{m/sec^2}$
- Initial Height = 5/ m
- What does this look like?

$$d = -16t^2 + 18t - 20$$

- Distance in meters, time in seconds
- Acceleration = $\frac{-32}{m/sec^2}$
- Initial Velocity = 8 m/sec
- Initial Height = -20 m
- What does this look like?

$$d = -16t^2 - 3t - 65$$

- Distance in meters, time in seconds
- Acceleration = <u>-32 m/sec</u>²
- Initial Velocity = <u>-3 m/sec</u>
- Initial Height = ___65 m
- What does this look like?

AM: WP: Quadratic Equations

2. A rock is thrown t, and from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after the rock is thrown is given by $d = -16t^2 - 2t + 835$. How long after the rock is thrown is it 340 feet from the ground?

[A] $\frac{45}{8}$ s

[B] $\frac{9}{2}$ s

C $\frac{11}{2}$

[D] none of these

d=16t2-2t+835

2±V(-2)2-4(-16)(495) 2(-16)

 $340 = -164^{2} - 24 + 835$ -340 $0 = -164^{2} - 24 + 495$ $0 = -164^{2} - 24 + 495$ 0 = -166 - 26 + 495

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

2±178 -32 \ II

21 Slide 2- 140

AM: WP: Quadratic Equations

1. The perimeter of a rectangular concrete slab is 110 feet, and its area is 624 square feet. What is the length of the longer side of the slab?

[A] 37 ft

[B] 40 ft

[C] 42 ft

[D] none of these

Variable and Equation Definitions (with units)

w= wickfh

P=penmeter= 2l+2w 710

A= Wea = 1 xw=624 V 55-4

ltw=55 l=55-w

A = W(55-w) = 624 $55w-w^2=624$ -624.624

 $-W^{2}+55W-624=0$ $-W^{2}+55W-624=0$ $-W^{2}+55W-624=0$ $-W^{2}+55W-624=0$

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley