Today's Objectives

- Solve real-world application problems by <u>listening</u> to and <u>analyzing</u> the properties of quadratic functions and <u>recognizing</u> corresponding polynomial features using the foursquare model as a graphic organizer.
- Success Criteria:
 - Apply transformations to a quadratic function
 - Rewrite quadratic in vertex form
 - Characterize quadratic functions from the verbal, algebraic, graphical, and analytical point of view.
- Vocabulary: quadratic, vertex, axes of symmetry, standard form, coefficients

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Example Transforming the Squaring Function

Describe how to transform the graph of $f(x) = x^2$ into the graph of

 $f(x) = 2(x-2)^{2} + 3.$ up 3 units

Stretch

factor

Right

2 units

Example Transforming the Squaring Function

Describe how to transform the graph of $f(x) = x^2$ into the graph of $f(x) = 2(x-2)^2 + 3$.

The graph of $f(x) = 2(x-2)^2 + 3$ is obtained by vertically stretching the graph of $f(x) = x^2$ by a factor of 2 and translating the resulting graph 2 units right and 3 units up.

The Graph of $f(x) = ax^2$

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 2- 116

Vertex Form of a Quadratic Equation

Any quadratic function $f(x) = ax^2 + bx + c$, $a \ne 0$, can be written in the vertex form

$$f(x) = a(x-h)^2 + k$$

The graph of f is a parabola with vertex (h,k) and axis x = h, where $h = \frac{-b}{(2a)}$ and $k = c - ah^2$.

If a > 0, the parabola opens upward, and if a < 0, it opens downward.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Silue 4- 117

Example Finding the Vertex and Axis of a Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of $f(x) = 2x^2 - 8x + 11$. Rewrite the equation in vertex form.

$$h = \frac{-b}{2a} = \frac{--8}{2(2)} = \frac{8}{4} = 2$$

$$k = c - ah^{2} 11 - 2(2)^{2} = 3$$

$$f(x) = 2(x-2)^{2} + 3$$

Example Finding the Vertex and Axis of a Quadratic Function

Use the vertex form of a quadratic function to find the vertex and axis of the graph of $f(x) = 2x^2 - 8x + 11$. Rewrite the equation in vertex form.

The standard polynomial form of f is $f(x) = 2x^2 - 8x + 11$.

So a = 2, b = -8, and c = 11, and the coordinates of the vertex are

$$h = -\frac{b}{2a} = \frac{8}{4} = 2$$
 and $k = f(h) = f(2) = 2(2)^2 - 8(2) + 11 = 3$.

The equation of the axis is x = 2, the vertex is (2,3), and the vertex form of f is $f(x) = 2(x-2)^2 + 3$.

Characterizing the Nature of a Quadratic Function

Fill in the following information in your 4-square graphic organizer.

Point of View

Characterization

Verbal

polynomial of degree 2

Algebraic

Standard Form

Vertex Form

$$f(x) = ax^2 + bx + c \text{ or }$$

$$f(x) = a(x-h)^2 + k \ (a \neq 0)$$

Graphical

parabola with vertex (h, k) and axis x = h; opens upward if a > 0,

opens downward if a < 0;

initial value = y-intercept = f(0) = c

x-intercepts = $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ in the second Addison-Wesley are the second Addison-W

AM: Solve a proportion that generates a linear or quadratic equation

3.
$$\frac{3y}{-18} = \frac{-6}{y-9}$$

[A]
$$y = -12$$
 or $y = 3$

[B]
$$y = 12$$
 or $y = 3$

[C]
$$y = 12$$
 or $y = -3$

[D]
$$y = -12$$
 or $y = -3$

3y-27y=108 -108-108

3y-27y-108=0 a=3 b=-27 c=-108

Slide 2- 125

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley