Leading Term Test for Polynomial End Behavior

For any polynomial function $f(x) = a_n x^n + ... + a_1 x + a_0$, the limits $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$ are determined by the

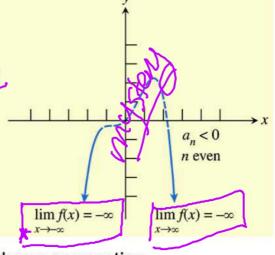
degree n of the polynomial

and its leading coefficient a_{i} :

This polynomial has () degree

because n is <u>EVEN</u>. Examples of ____ numbers

Include ____, ___, and



Find two 4-term polynomials with these properties.

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 2-80

End Behavior Song

http://www.youtube.com/watch?
 v=ohni1PVrlek&feature=share&list=FLbzBuP
 FkjwlDIwDqRBsotsA

Example Applying Polynomial Theory

Describe right end behavior of $g(x) = 2x^4 - 3x^3 + x - 1$ using limits.

Х	g(x)	•
100	1.97×108	
200	13.18×109	
300	1.6×1010	
4D0	51 x 1010	
500	1.2 x10"	
400	2.6×101	
700	4.8 x 10"	1

Describe the right hand end behavior of $g(x) = 2x^4 - 3x^3 + x - 1$ using limits.

$$\lim_{x\to\infty}g(x)=\infty$$

Example Applying Polynomial Theory

Describe left end behavior of $g(x) = 2x^4 - 3x^3 + x - 1$ using limits.

$$\lim_{x \to -\infty} f(x) = \infty$$

1	x	g(x)	
-	-1000	2×1012	
	-900	1.3/10	12
	-800	8.2x1	oll
	-700	4.8x1	Dil
	-600	2.6%	1011
	500	1.3XI	
1	-400	5.1x(DID

Describe the right hand end behavior of $g(x) = 2x^4 - 3x^3 + x - 1$ using limits.

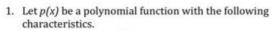
$$\lim_{x\to\infty}g(x)=\infty$$

LO: The limit of the polynomial function g(x) is

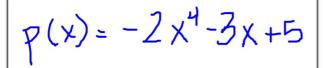
______ as x approaches _______. I

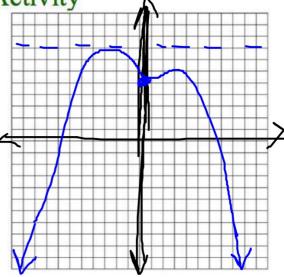
know this because when I look at a table of values for
the function that has large negative x values in
decreasing order, the y values in the table are
________ and __increasing_____. This
numerical evidence means that as x approaches
________ y approaches ________.

Graphing Activity



- · y-intercept of 5
- · End behavior limits are: $\lim p(x) = -\infty$ and $\lim p(x) = -\infty$
- upper bound of y = 8
- a. Sketch a possible graph for p(x).
- b. Write a possible definition for p(x). Note parts a. and b. do not need to be the same polynomials.

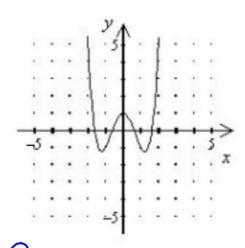




- c. The right end behavior: As the input x approaches _
- _, the output, y = f(x), approaches
- d. The left end behavior: As the input, x, approaches
 e. To show _____ is the y-intercept, we can evaluate p(1) = _____
- and we know that the graph must pass through the point 11,5

AM: Graph nth degree polynomials

1. Which function matches the graph?



(A)
$$f(x) = x^4 - 3x^2 + 1$$

(C) $f(x) = -x^4 + 3x^2 + 2$

LO: Since the graph has a W shape, it must be a polynomial of degree _____.

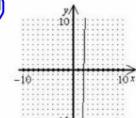
Since y goes to ______ as x gets large and positive and since y goes to _____ as x gets large and negative, the leading coefficient for f(x) must be _____ therefore f(x) =

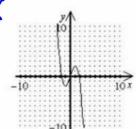
	$f(x) = -x^5 - 3x^3 - 1$	
	$f(x) = -x^5 - 3x^3 - 1$ $f(x) = x^5 - 3x^3 + 1$	
/\	Slide	8

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

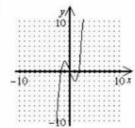
AM: Graph nth degree polynomials

2. Graph: $y = 3x^3 + 2x^2 - 9x - 18$









Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley